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Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed behavioral disorder in childhood
and likely represents an extreme of normal behavior. ADHD significantly impacts learning in school-age children
and leads to impaired functioning throughout the life span. There is strong evidence for a genetic etiology of the
disorder, although putative alleles, principally in dopamine-related pathways suggested by candidate-gene studies,
have very small effect sizes. We use affected-sib-pair analysis in 203 families to localize the first major susceptibility
locus for ADHD to a 12-cM region on chromosome 16p13 (maximum LOD score 4.2; ), buildingP p .000005
upon an earlier genomewide scan of this disorder. The region overlaps that highlighted in three genome scans for
autism, a disorder in which inattention and hyperactivity are common, and physically maps to a 7-Mb region on
16p13. These findings suggest that variations in a gene on 16p13 may contribute to common deficits found in
both ADHD and autism.

Attention-deficit/hyperactivity disorder (ADHD [MIM
143465]) is the most commonly diagnosed behavioral dis-
order in childhood and likely represents an extreme of
normal behavior (Levy et al. 1997; Brown et al. 2001).
ADHD significantly impacts learning in school-age chil-
dren and leads to impaired functioning throughout the
life span (Cantwell 1996). There is strong evidence for a
genetic etiology of the disorder (Smalley 1997), although
putative alleles, principally in dopamine-related pathways
suggested by candidate-gene studies, have very small effect
sizes (Faraone et al. 2001; Swanson et al. 2001). In the
first genomewide scan for ADHD, three chromosomal
regions, 10q26, 12q23, and 16p13, yielded multipoint
maximum LOD scores 11.5, but no region exceeded the
criteria for significant or suggestive linkage (Fisher et al.
2002).

The sample used in the present study consists of 277
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affected sib pairs (ASPs) in 203 families, including 126
ASPs (104 families) from the previous genomewide scan
of ADHD (Fisher et al. 2002). ADHD was diagnosed
using DSM-IV criteria, with 95% of affected individu-
als meeting full criteria and 5% of affected individuals
falling one symptom short but meeting age-at-onset
and impairment criteria (American Psychiatric Asso-
ciation 1994). This definition of ADHD corresponds to
the “broad” classification used in our previous ge-
nomewide scan (Fisher et al. 2002). All families with
ASP had at least one affected member meeting full cri-
teria (for a description of the measures and diagnostic
methods, see Smalley et al. 2000). The affected members
(322 male and 118 female) in the ASPs had a mean IQ
of 106, a mean age of 11 years, and were largely white
(80%).

Individuals were genotyped for 11 microsatellites and
5 SNPs spanning ∼25 cM on chromosome 16p, analyzed
using standard procedures (Hirschhorn et al. 2000; Fisher
et al. 2002). Both parents were genotyped in 185 (91%)
of the families, and only one parent was genotyped in 18
(9%) of the families. Because of our interest in the 16p
region, resulting both from the initial genome scan results
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Figure 1 MLSs for ADHD and markers on chromosome 16p.
The relative marker locations, estimated in the current data set, are
shown by diamonds. The SNPs are shown as a single point, with the
average MLS indicated in the figure at that position. The SNP distances
were based on physical distances (HGP-sc, August 2001 build) and
were ordered as follows (with intermarker distances given, in Mb):
rs153783–.005–rs1125972–.02–rs1065838–.05–rs1127293–.005–
rs1107143.

(Fisher et al. 2002) and from our work in autism and
tuberous sclerosis complex (Smalley et al. 1998; Inter-
national Molecular Genetic Study of Autism Consortium
[IMGSAC] 1998, 2001; Khare et al. 2001), we are de-
veloping SNPs in the region. We identified five SNPs from
larger sets available on chromosome 16, because they
were located in the 25-cM region, genotyped well, and
were relatively polymorphic (i.e., allelic variants had fre-
quencies 110%). The five SNPs fell within a narrow re-
gion (1 Mb) and were used in linkage analyses by setting
the distances between them according to physical maps.

The microsatellite order and the SNP placement
among them were determined using the Marshfield ge-
netic database and physical databases (Center for Med-
ical Genetics Web site), the Human Genome Project–
Santa Cruz (HGP-sc) (International Human Genome Se-
quence Consortium 2001; UCSC Human Genome Pro-
ject Working Draft Web site), and Celera (CEL) (Venter
et al. 2001; Celera Web site), as well as genetic mapping
in our own data set. Because this region has inconsis-
tencies across the genetic and physical databases avail-
able, the following procedure was used to determine the
map order and distances for linkage analyses. The
Marshfield map was used to determine microsatellite or-
der, and, for markers genetically positioned at a single
point, physical databases were used to order them. When
inconsistencies were identified across different physical
databases (e.g., HGP-sc August and December 2001
builds and CEL), orders that were consistent in at least
two of the physical builds were selected. Genetic map-
ping was performed using the ASPEX program package
(available from the ASPEX Linkage Analysis Package
FTP site) and the “do_shuffle” command, which com-
putes a multipoint LOD score for a marker against a
fixed map of markers, moving the location of the un-
known marker from the distal end through each position
along the map. This method was used to check the order
of the microsatellites (e.g., D16S764) in our data when
discrepancies were noted between different physical da-
tabases and the Marshfield map. The SNPs were posi-
tioned on the basis of physical data (HGP-sc and CEL)
and genetic mapping of the two most informative SNPs
(rs1127293 and rs1107143) in the current sample
against the microsatellite panel.

Single and multipoint maximum LOD scores (MLSs)
were computed under the possible triangle method, under
the assumption of no dominance variance, through use
of ASPEX. Transmission/disequilibrium testing (TDT) of
the SNPs and ADHD was performed using ASPEX, which
allows for multiple siblings to be included in a test of
association in the presence of linkage, by permuting pa-
rental alleles while fixing the identity-by-descent (IBD)
status of the siblings.

As shown in figure 1, significant linkage ( )MLS p 4.2
was observed for ADHD and the markers on 16p, with

the maximum obtained near marker D16S3114. The 1-
LOD support interval falls between markers D16S519
and D16S405, within estimated distances of ∼12 cM in
our data set and ∼7 Mb on the basis of physical maps
(HGP-sc and CEL) of the region between these two mark-
ers. The significant linkage in the extended sample was a
function of both the increased density of markers and the
additional ASPs. In the initial genome scan, the linkage
finding for markers on chromosome 16 and ADHD (∼10-
cM density) was a multipoint MLS of 1.5 near marker
D16S3075 (Fisher et al. 2002). The markers in the present
analyses (∼2-cM density) yielded a multipoint MLS of 3.1
( ) at marker D16S3114 in the same set ofP p .00008
ASPs, despite similar levels of marker heterozygosity (i.e.,
the average information content of the first set was 79%,
and that of the second set was 81%). The additional set
of 153 ASPs independently yielded a multipoint MLS of
1.9 ( ).P p .0015

As indicated in table 1, three genomewide scans for
autism have highlighted the region on 16p13, with max-
imum linkage peaks located within the 1-LOD support
interval and spanning contigs positioned 13–20 Mb
from the telomere of 16p (HGP-sc and CEL). It should
be noted, however, that only two of the three scans in
autism (IMGSAC 2001; Liu et al. 2001) met criteria for
suggestive linkage and none met criteria for significant
linkage (Lander and Kruglyak 1995).

As shown in table 1, single-point MLS values were
fairly consistent with the multipoint analyses, with three
markers having an MLS 12.0 and seven markers having
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Table 1

Single-Point IBD Proportions, Multipoint Sharing Proportions, and MLS Values (Single-Point and Multipoint) for ADHD and Markers on
Chromosome 16p

MARKER

DISTANCE

(cM) SINGLE-POINT MULTIPOINT
LINKAGE

PEAK AND

1-LOD
SUPPORT

INTERVALa

LINKAGE PEAK FROM STUDY BYb

Marshfield
Present
Studyc

No. of
Informative

Meioses % IBD MLS % Sharing MLS Pd

IMGSAC
(2001)

Philippe et al.
(1999)

Liu et al.
(2001)

D16S404 18.07 0 250 53.2 .27 56.5 1.23 .0086

D16S519 20.77 4.9 240 54.2 .39 57.8 2.03 .0011
D16S3114 23.28 4.5 261 62.5 3.63 60.4 4.22 .0000052 ***
D16S3075 23.28 2.8 268 53.0 .23 59.7 3.75 .000016 ***
D16S3047 23.28 .5 223 61.4 2.80 59.9 3.84 .000013
D16S3102 24.53 ***
D16S2619 28.3 ***
rs153783 2.9 38 63.2 .64 59.0 3.28 .000051
rs1125972 .005 38 39.5 .00 59.1 3.29 .000050
rs1065838 .02 94 57.4 .52 59.1 3.35 .000043
rs1127293 .05 123 62.6 1.68 59.5 3.81 .000014
rs1107143 .005 110 60.9 1.06 59.0 3.25 .000055
D16S3060 28.3 2.9 276 58.7 2.29 60.1 3.79 .000015
D16S405 28.3 1.6 232 55.2 .55 59.0 3.01 .000098
D16S3079 28.3 1.8 198 56.1 .70 58.9 2.80 .00017
D16S764 29.97 3.0 205 54.1 .35 58.0 2.15 .00083
D16S499 33.14 4.1 237 58.6 1.53 56.9 1.52 .0041

D16S3046 40.65 7.5 296 53.7 .39 56.7 1.43 .0051

a Support interval is demarcated by a box; position of linkage peak is indicated by asterisks.
b Positions of linkage peaks are indicated by asterisks. The maximum LOD scores for the autism scans were as follows: IMGSAC (2001), MLS p 2.9; Philippe

et al. (1999), MLS p 0.74; Liu et al. (2001), MLS p 2.19.
c Intermarker distances are estimated from the data set; inter-SNP distances are based on physical distances (HGP-sc, CEL).
d The P values for the multipoint MLS values are found by multiplying and determining significance from x2 tables, taking into account the one-sided2loge

nature of the linkage test, as described elsewhere (Kruglyak and Lander 1995).

MLS values of .5–2. We tested each SNP for association
with ADHD through use of the TDT, but no associations
were observed (all P values 1.05; data not shown).

There are 159 unigene clusters that map to the 7-Mb
interval highlighted by the current scan; of these, 35 are
known genes, but none are hypothesized candidates for
ADHD (HGP-sc, August 2001 build). There are two pos-
sible candidates, reflected by brain-expressed mRNAs
and a potential role in neurobehavioral disorders: SNN,
the gene that encodes stannin, which interacts with neu-
ral toxins and exposure to which produces behavioral
changes; and Nude1, a gene that encodes a Lis1-inter-
acting protein. Hemizygous mutations in Lis1 result in a
severe brain malformation, lissencephaly. Two additional
candidates map within 2 Mb of the 1-LOD support in-
terval: GRIN2A, which encodes an N-methyl-D-aspartate
glutamate receptor subunit proposed to play a role in
long-term potentiation; and DOC2A, which encodes a
C2-like domain–containing protein implicated in neuro-
transmission. It is interesting to note that a gene coding
for tuberous sclerosis complex (TSC2) is located ∼5 Mb
telomeric from this region and that TSC is an autosomal
dominant disorder in which high rates of autism and
ADHD have been reported (Smalley 1998). Genotype-

phenotype studies of large deletions on 16p in patients
with TSC may provide additional data to identify a risk
gene in ADHD and autism.

The multipoint MLS of 4.2 exceeds that recommended
for significant linkage (i.e., 3.93) for the specific analytic
method used in the present study (Nyholt 2000). Al-
though neither set of ASPs independently reached sig-
nificance for linkage, increased IBD sharing is evident in
the first and second sets of ASPs, reflected by multipoint
MLS values of 3.1 ( ) and 1.9 ( ),P p .00008 P p .0015
respectively. Although the MLS obtained in the second
sample exceeds the recommended significance level for
a replication ( ; Lander and Kruglyak 1995), itP p .01
cannot be thought of as a true replication, because the
original sample alone did not yield significant linkage;
the second set of ASPs provides significant evidence for
linkage of ADHD at the .05 level, when a conservative
Bonferonni correction is used for 15 markers in the in-
terval under analysis (Lander and Kruglyak 1995). The
estimated effect size for the putative gene, based on the
multipoint sharing proportions of 58%–60% in the ex-
tended sample, is equivalent to sibling recurrence risk
ratio (ls) values of 1.4–1.6 (Risch et al. 1990a, 1990b),
suggesting that such a locus could account for as much
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as 28%–32% of the observed ls, which has been esti-
mated as ∼5 in ADHD (Smalley 1997).

The question of whether the region highlighted on
16p13 contains a risk gene for ADHD, autism, or both
disorders requires additional investigation. Independent
replication of the linkage finding on 16p13 for ADHD
is necessary for confirmation of linkage. Further studies
are needed to determine the significance of linkage be-
tween autism and markers in this region. If linkages are
replicated, then the phenotypic overlap of ADHD and
autism may shed light on a pleiotropic risk allele, if
present. Clinically, ADHD and autism are quite distinct,
and, although inattention and hyperactivity are common
among children with autism, a diagnosis of ADHD is
precluded under DSM-IV criteria if symptoms are better
accounted for by autism or pervasive developmental dis-
order (American Psychiatric Association 1994). Despite
the clear clinical boundaries, there are certain behav-
ioral, cognitive, and neurobiological deficits that suggest
some degree of phenotypic overlap. First, maladaptive
social functioning (a clinical criterion of autism) is com-
mon in ADHD, and, although a majority of such deficits
are thought to arise from core features of ADHD (e.g.,
impulsivity), other deficits, such as failing to monitor
and react to social interactions and misinterpretation of
social cues (Greene et al. 1996), may be similar in type
to those seen in autism. Second, executive function (EF)
deficits, processes involved in the planning and imple-
mentation of goal-oriented strategies, are noted in both
ADHD and autism, although underlying mechanisms,
including inhibition, set-shifting, attention, and working
memory, may differ (Sergeant et al. 2002). For example,
Ozonoff and Jensen (1999) found deficits in flexibility
and planning in autism, whereas inhibition deficits ac-
counted for the EF deficits in ADHD; however, addi-
tional work in this area is greatly needed (Sergeant et
al. 2002). Third, there is a significant subgroup of chil-
dren with autism and symptoms of ADHD who respond
to stimulant medication (Handen et al. 2000), suggesting
that common neurobiological mediators may be present
in a subset of cases. Further identification of phenotypic
overlap in ADHD and autism at the behavioral, neu-
rocognitive, and brain levels is warranted, particularly
in light of the linkage findings. The current data provide
the first evidence, to our knowledge, of significant link-
age of this common neurobehavioral disorder, using a
genomewide approach and anonymous polymorphic
markers.
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